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Abstract

An algorithm is presented which solves the multi-dimensional di�usion equation

on complex shapes to 4th-order accuracy and is asymptotically stable in time. This

bounded-error result is achieved by constructing, on a rectangular grid, a di�erentiation

matrix whose symmetric part is negative de�nite. The di�erentiation matrix accounts

for the Dirichlet boundary condition by imposing penalty like terms.

Numerical examples in 2-D show that the method is e�ective even where standard

schemes, stable by traditional de�nitions, fail.
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1 Introduction

Recently there has been renewed interest in �nite-di�erence algorithms of high order of

accuracy (4th and above), both for hyperbolic and parabolic p.d.e's (see for example, [1], [2],

[3] ). The advantages of high-order accuracy schemes, especially for truly time dependent

problems, are often o�set by the di�culty of imposing stable boundary conditions. Even

when the scheme is shown to be G.K.S.-stable the error may increase exponentially in time.

This paper is concerned with 4th-order approximations to the long time solutions of the

di�usion equation in one and two dimensions, on irregular domains. By an irregular domain,

we mean a body whose boundary points do not coincide with nodes of a rectangular mesh.

In section 2 we develop the theory for the one-dimensional semi-discrete system resulting

from the spatial di�erentiation used in the �nite di�erence algorithm. Energy methods are

used in conjunction with \SAT" type terms (see [1]), in order to �nd boundary conditions

that preserve the accuracy of the scheme while constraining an energy norm of the error to

be temporally bounded for all t > 0 by a constant proportional to the truncation error.

In section 3 it is shown how the methodology developed in section 2 is used as a building

block for the multi-dimensional algorithm, even for irregular shapes containing \holes."

Section 4 presents numerical results in two space dimensions illustrating the long-time

temporal stability of the method, in contradistinction to \standard" methods for cartesian

grid on irregular shapes.
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2 The One Dimensional Case

We consider the following problem

@u

@t
= k

@2u

@x2
+ f(x; t); �L � x � �R; t � 0; k > 0 (2:1a)

u(x; 0) = u0(x) (2:1b)

u(�L; t) = gL(t) (2:1c)

u(�R; t) = gR(t) (2:1d)

and f(x; t)� C4.

Let us spatially discritize (2.1a) on the following uniform grid:

x x x x x x x x
1 2 3 j-1 j j+i N-2 N-1 N

x

x=h∆
γ h
LΓ

RL
Γ

γ h
R

Figure 1: One dimensional grid.

Note that the boundary points do not necessarily coincide with x1 and xN . Set xj+1�xj = h,

1 � j � N � 1; x1 � �L = Lh; 0 � L < 1; �R � xN = Rh; 0 � R < 1.

The projection unto the above grid of the exact solution u(x; t) to (2.1), is uj(t) =

u(xj; t)
4

= u(t): Let ~D be a matrix representing the second partial derivative with respect to

x, at internal points without specifying yet how it is being built. Then we may write

d

dt
u(t) = k[ ~Du(t) +B+T] + f(t) (2:2)
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where T is the truncation error due to the numerical di�erentiation and f(t) = f(xj; t),

1 � j � N . The boundary vector B has entries whose values depend on gL; gR, L; R in

such a way that ~Du +B represents the 2nd derivative everywhere to the desired accuracy.

The standard way of �nding a numerical approximate solution to (2.1) is to omit T from

(2.2) and solve

d

dt
v(t) = k( ~Dv(t) +B) + f(t) (2:3)

where v(t) is the numerical approximation to the projection u(t). An equation for the

solution error vector, ~�(t) = u(t)� v(t), can be found by subtracting (2.3) from (2.2):

d

dt
~� = k ~D~�(t) + kT(t) (2:4)

Our requirement for temporal stability is that k ~� k, the L2 norm of ~�, be bounded by a

\constant" proportional to hm (m being the spatial order of accuracy) for all t <1. Note

that this de�nition is more severe than either the G.K.S. stability criterion [4] or the de�nition

in [1].

It can be shown that if ~D is constructed in a standard manner, i.e., the numerical second

derivative is symmetric away from the boundaries, and near the boundaries one uses non

symmetric di�erentiation, then there are ranges of values of R and L for which ~D is

not negative de�nite. Since in the multi-dimensional case one may encounter all values of

0 � L; R < 1, this is unacceptable.

The rest of this section is devoted to the construction of a scheme of 4th order spatial

accuracy, which is temporally stable for all L; R.
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The basic idea is to use a penalty-like term as in the SAT procedure of ref [1]; here,

however, it will be modi�ed and applied in a di�erent manner.

Note �rst that the solution projection uj(t) satis�es, besides (2.2), the following di�er-

ential equation:

du

dt
= kDu + kTe + f(t) (2:5)

where now D is indeed a di�erentiation matrix, that does not use the boundary values, and

therefore Te 6= T but it too is a truncation error due to di�erentiation.

Next let the semi-discrete problem for v(t) be, instead of (2.3),

dv

dt
= k[Dv � �L(ALv� gL)� �R(ARv � gR)] + f(t) (2:6)

where gL = (1; . . . ; 1)T gL(t); gR = (1; . . . 1)T gR(t), are vectors created from the left and

right boundary values as shown. The matrices AL and AR are de�ned by the relations:

ALu = gL �TL; ARu = gR �TR; (2:7)

i.e., each row in AL(AR) is composed of the coe�cients extrapolating u to its boundary value

gL(gR), at �L(�R) to within the desired order of accuracy. (The error is then TL(TR).) The

diagonal matrices �L and �R are given by

�L = diag (�L1
; �L2

. . . ; �LN ); �R = diag (�R1
; . . . �RN ) (2:8)

Subtracting (2.6) from (2.5) we get

d~�

dt
= k[D~�� �LAL~�� �RAR~�+T1] (2:9)
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where

T1 = Te + �LTL + �RTR

Taking the scalar product of ~� with (2.9) one gets:

1

2

d

dt
k ~� k2 = k(~�; (D � �LAL � �RAR)~�) + k(~�;T1)

= k(~�;M~�) + k(~�;T1) (2.10)

We notice that (~�;M~�) is (~�; (M +MT )~�=2, where

M = D � �LAL � �RAR: (2:11)

If M +MT can be made negative de�nite then

(~�; (M +MT )~�=2 � �c0 k ~� k2; (c0 > 0): (2:12)

Equation (2.10) then becomes

1

2

d

dt
k ~� k2� �kc0 k � k2 +k(~�;T1)

and using Schwartz's inequality we get after dividing by k ~� k

d

dt
k ~� k� �kc0 k ~� k +k k T1 k

and therefore (using the fact that v(0) = u(0))

k ~� k� k T1 kM
c0

(1� e�kc0t) (2:13)
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where the \constant00 k T1 kM= max0���t k T1(� ) k.

If we indeed succeed in constructing M such that M +MT is negative de�nite, with c0 > 0

independent of the size of the matrix M as it increases, then it follows from (2.13) that

the norm of the error will be bounded for all t by a constant which is O(hm) where m is

the spatial accuracy of the �nite di�erence scheme (2.6). The numerical solution is then

temporally stable.

The rest of this section is devoted to this task for the case of m = 4, i.e, a fourth order

accurate �nite di�erence algorithm.

Let the n� n di�erentiation matrix, D, be given by

1

12h2

2
66666666666666666666666666664

45 �154 214 �156 61 �10
10 �15 �4 14 �6 1

�1 16 �30 16 �1
�1 16 �30 16 �1

�1 16 �30 16 �1
. . .

. . .
. . .

�1 16 �30 16 �1
�1 16 �30 16 �1

1 �6 14 �4 �15 10
�10 61 �156 214 �154 45

3
77777777777777777777777777775

(2.14)

The upper two rows and the lower two rows represent non-symmetric fourth order accurate

approximation to the second derivative without using boundary values. The internal rows
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are symmetric and represent central di�erencing approximation to uxx to the same order.

Note that D is not negative de�nite, and neither is the symmetric part of 1

2
(D+DT ) which

is given by:

1

24h2

2
666666666666666666666666666666664

90 �144 213 �156 61 �10
�144 �30 12 13 �6 1

213 12 �60 32 �2 0
�156 13 32 �60 32 �2

61 �6 �2 32 �60 32 �2
�10 1 0 �2 32 �60 32 �2

�2 32 �60 32 �2 0 1 �10
�2 32 �60 32 �2 �6 61

�2 32 �60 32 13 �156
0 �2 32 �60 12 213
1 �6 13 12 �30 �144

�10 61 �156 213 �144 90

3
777777777777777777777777777777775

(2.15)

In order to construct M we need to specify AL, AR, �L and �R. We construct AL as

follows:

AL = A(L)
� + cLA

(L)
e (2:16)

7



where

A(L)
� =

2
666666666664

�1 �2 �3 �4 �5 0 . . . 0

�1 �2 �3 �4 �5 0 . . . 0

�1 �2 �3 �4 �5 0 . . . 0

�1 �2 �3 �4 �5 0 . . . 0

�1 �2 �3 �4 �5 0 . . . 0
...

�1 �2 �3 �4 �5 0 . . . 0

3
777777777775
; (2:17)

cL = diag [�20�1=71; 0; . . . ; 0] (2:18)

A(L)
e =

2
66664
�1 5 �10 10 �5 1 0 . . . 0

�1 5 �10 10 �5 1 0 . . . 0
...
�1 5 �10 10 �5 1 0 . . . 0

3
77775 : (2:19)

The �'s are given by

�1 = 1 +
25

12
L +

35

24
2L +

5

12
3L +

1

24
4L

�2 = �
�
4L +

13

3
2L +

3

2
3L +

1

6
4L

�

�3 = 3L +
19

4
2L + 23L +

1

4
4L (2.20)

�4 = �
�
4

3
L +

7

3
2L +

7

6
3L +

1

6
4L

�

�5 =
1

4
L +

11

24
2L +

1

4
3L +

1

24
4L
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Note that A(L)
� v gives a vector whose components are the extrapolated value of v at x = �L

(i.e., v�L(t)), to �fth order accuracy; while A
(L)
e v gives a vector whose components represents

(@5v1=@x
5)h5. Since CL (see 2.18) is of order unity, then ALv = (A(L)

� + cLA
(L)
e )v represents

an extrapolation of v to v�L to �fth order.

Before using AL in (2.11) or (2.6) we must de�ne �L:

�L =
1

12h2
diag[�1; �2; �3; �4; �5; 0; . . . ; 0] (2:21)

where

�1 = 71=2�1

�2 = (�94 � �2�1)=�1

�3 = (113 � �3�1)=�1 (2.22)

�4 = (�56 � �4�1)=�1

�5 = (11 � �5�1)=�1

The right boundary treatment is constructed in a similar fashion, and the formulae corre-

sponding to (2.16) - (2.22) become:

AR = A(R)
� + cRA

(R)
e ; (2:23)

A(R)
� =

2
66666666666664

0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N
0 . . . . . . . . . 0 0 �N�4 �N�3 �N�2 �N�1 �N

3
77777777777775
; (2:24)
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CR = diag[0; 0; . . . ; 0; �20�N=71] (2:25)

A(R)
e =

2
66664
0 0 . . . 0 1 �5 10 �10 5 �1
0 0 . . . 0 1 �5 10 �10 5 �1
...

0 0 . . . 0 1 �5 10 �10 5 �1

3
77775 (2:26)

The �'s are here:

�N = 1 +
25

12
R +

35

24
2R +

5

12
3R +

1

24
4R

�N�1 = �
�
4R +

13

3
3R +

3

2
3R +

1

6
4R

�

�N�2 = 3R +
19

4
2R + 23R +

1

4
4R (2.27)

�N�3 = �
�
4

3
R +

7

3
2R +

7

6
3R +

1

6
4R

�

�N�4 =
1

4
R +

11

24
2R +

1

4
3R +

1

24
4R;

�R =
1

12h2
diag[0; . . . ; �N�4; �N�3; �N�2; �N�1; �N ]; (2:28)

�N = 71=2�N
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�N�1 = (�94 � �N�1�N)=�N

�N�2 = (113 � �N�2�N )=�N (2.29)

�N�3 = (�36 � �N�3�N)=�N

�N�4 = (11 � �N�4�N )=�N

We are now ready to construct

1

2
(M +MT ) =

1

2

n
D +DT � [�L(A

(L)
� + cLA

(L)
e ) + �R(A

(R)
� + cRA

(R)
e )]

� [�L(A
(L)
� + cLA

(L)
e ) + �R(A

(R)
� + cRA

(R)
e ]T

o
(2.30)

Upon using equations (2.14)-(2.29) in (2.30) one gets:

M +MT

2
=

1

24h2

2
666666666666666666666666664

0 6

W (L) 0

�2 0

32 �2 0

0 . . . 0 �2 32 �60 32 �2
�2 32 �60 32 �2

�2 32 �60 32
. . .

. . .
. . .

. . .
. . .

�2 32 �60 �32 2 0 . . . 0

0
�2 32

�2 W (R)

0

3
777777777777777777777777775

(2.31)
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where W (L) and W (R) are 6� 6 blocks given by:

W (L) = W
(L)
1 +W

(L)
2 (2:32)

W (R) = W
(R)
1

+W
(R)
2

(2:33)

W
(L)
1ij

=

8>>>>>>>><
>>>>>>>>:

0 i = 1 or j = 1

�(�i�j + �j�i) i; j 6= 1

9>>>>>>>>=
>>>>>>>>;

1 < i; j < 5 (2:34)

W
(L)
1ij

=

8>>>>>><
>>>>>>:

0 i = N or j = N

�(�N�i�N�j + �N�j�N�i)

9>>>>>>=
>>>>>>;

0 � N � i;N � j � 4 (2:35)

W
(L)
2 =

2
666666664

�1 0 0 0 0 0

0 �30 12 13 �6 1

0 12 �60 32 �2 0
0 13 32 �60 32 �2
0 �6 �2 32 �60 32

0 1 0 �2 32 �60

3
777777775

(2:36)

W
(R)
2 =

2
666666664

�60 32 �2 0 1 0
32 �60 32 �2 �6 0

�2 32 �60 32 13 0

0 �2 32 �60 12 0
1 �6 13 12 �30 0

0 0 0 0 0 �1

3
777777775

(2:37)
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The next task is to show that ~M = 1

2
(M +MT ) is negative de�nite. We write the symmetric

matrix ~M as a sum of �ve symmetric matrices,

~M =
1

24h2

h
�0 ~M1 + 2 ~M2 + (24 � �0) ~M3 + ~M4 + ~M5

i
: (2:38)

We shall show that ~M1 is negative de�nite, and that ~Mj(j = 2; . . . 5) are non-positive de�nite.

The ~M 's are given by

~M1 =

2
666666666666666664

� 1

2�0
0 0

0 �2 1 0 0
0 1 �2 1 0
0 0 1 �2 1
0 0 0 1 �2 1

. . .
. . .

. . .

1 �2 1 0

1 �2 0
0 0 � 1

2�0

3
777777777777777775

= ML
1
+ M̂1 +MR

1
(2:39)

whereML
1
=

"
�1=2�0 0

0 0

#
;MR

2
=

"
0 0
0 �1=2�0

#
and M̂1 is the remaining (N�2)�(N�2)

middle block.
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~M2 =

2
666666666666666666666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 �1 2 �1
0 0 0 0 2 �5 4 �1

�1 4 �6 4 �1

�1 4 �6 4 �1
�1 4 �5 2 0 0 0 0

0 �1 2 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

3
777777777777777777777777777777777775

(2:40)

~M3 =

2
666666666666666666666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 �1 1

0 0 0 0 0 1 �2 1

1 �2 1

1 �2 1

1 �1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
777777777777777777777777777777777775

(2:41)
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~M4 =

2
66666666666666666666666666666666666666664

�1=2 0 0 0 0 0

�30 + 2� 12 � � 13 �6
0 1

2�2�2 �(�2�3 + �3�2) �(�2�4 + �4�2) �(�2�5 + �5�2)

12 � � �60 + 2� 32 � � �2
0 0

�(�2�3 + �3�2) �2�3�3 �(�3�4 + �4�3) �(�3�5 + �5�3)

13 32 � � �60 + 2� 32 � �

0 �2
�(�2�4 + �4�2) �(�3�4 + �4�3) �2�4�4 �(�4�5 + �5�4)

�6 �2 32 � � 58 + �

0 28� �

�(�2�5 + �5�2) �(�3�5 + �5�3) �(�4�5 + �5�4) �2�5�5

0 1 0 �2 28 � � 26 + �

3
77777777777777777777777777777777777777775

(2.42)
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~M5 =

2
666666666666666666666666666666666666666666666664

�26 + � 28 � � �2 0 1

0

28 � � �58 + 2� 32 � � �2 �6

�2�N�4�N�4 �(�N�3�N�4 �(�N�2�N�4 �(�N�1�N�4 0
+�N�4�N�3) +�N�4�N�2) +�N�4�N�1)

�2 32 � � �60 + 2� 32 � � 13

�(�N�3�N�4 �2�N�3�N�3 �2(�N2
�N�3 �(�N�1�N�3 0

+�N�4�N�3 ��N�3�N�2) +�N�3�N�1)

0 �2 32 � � �60 + 2� 12 � �

�(�N�2�N�4 �2(�N�2�N�3 �2�N�2�N�2 �(�N�1�N�2 0
+�N�4�N�2) +�N�3�N�2) +�N�2�N�1)

1 �6 13 12 � � �30 + 2�
�(�N�1�N�4 �(�N�1�N�3 �(�N�1�N�2 �2�N�1�N�1 0

+�N�4�N�1) +�N�3�N�1 (�N�2�N�1)

0 0 0 0 0 �1=2

3
777777777777777777777777777777777777777777777775

:

(2.43)

Let us consider M̂1 - see (2.39); it may be decomposed as follows:

M̂1 = �

2
666666664

1 �1
. . .

. . .

. . .
. . .
. . . �1

1

3
777777775

2
666666664

1

�1 . . .
. . .

. . .

. . .
. . .

�1 1

3
777777775
+

2
666666664

0
. . .

0
. . .

�1

3
777777775
(2:44)

The last matrix in non-positive de�nite. The �rst term is a product of a regular matrix with

its transpose, hence its negative is a negative de�nite matrix. Thus we established that M̂1
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is negative de�nite for any �nite dimension N . All its eigenvalues are negative. It remains

to show that the eigenvalues of ~M1=h
2 (see (2.38) are bounded away from zero by a constant

as h! 0 (N !1).

Consider a symmetric tridiagonal matrix S with, like M̂1, constant diagonals:

S =

2
6666666664

b a 0

a b a

0 a b a
. . .

. . .
. . .

a b a

a b

3
7777777775
: (2:45)

Designate by Dj the determinant of the upper-left j � j sub-matrix. Thus D1 = b; D2 =

det

"
b a

a b

#
, etc.

We have then D1 = b, D2 = b2 � a2 and in general

Dj = bDj�1 � a2Dj�2 (2:46)

It can be shown (see Appendix I) that the solution to the recursion relation (2.46) is

Dj = � 1

a2

"
A

�j1
+

B

�j2

#
(2:47)

where

�1 =
1

2a2

h
b+

p
b2 � 4a2

i
(2.48)

�2 =
1

2a2

h
b�

p
b2 � 4a2

i
(2.49)
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A =
1

�1 � �2
[(D2 � bD1)�1 +D1] (2.50)

B =
1

�1 � �2
[(D2 � bD1)�2 +D1] (2.51)

We have already shown that ~M1 is negative de�nite. The eigenvalue of M̂1 are found from

det( ~M1 � I�) =

 
� 1

2�0
� �

!
� det(M̂1 � �I) �

 
� 1

2�0
� �

!
= 0 (2:52)

thus either � = �1=2�0 < 0 (because �0 will be taken positive) or � = eigenvalue of M̂1 < 0.

We would like to investigate the behavior of the eigenvalues of �0
24h2

~M1. In particular we

would like to show that these eigenvalues (which are negative) are bounded away from zero.

To show this we analyze the behavior of M̂1��I as N increases. We now take S = M̂1��I.

Its determinant is given by DN�2. Substituting (2.48)-(2.51) into (2.47) with j = N � 2 we

get after some elementary manipulations

DN�2 =
2N�2

�rN�3
sin(N � 1)� (2:53)

where

� =
p
4 � b2; b = �2� �; a = 1 (2.54)

r =
q
b2 + �2 = 2

� = tan�1(�=b)

From (2.52) we require

DN�2 = 0 (2:55)
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This is equivalent, see (2.53), to requiring

� =
k�

N � 1
; k = 1; . . . ; N � 2: (2:56)

From the de�nition of � and (2.54) we obtain

tan

 
k�

N � 1

!
= �

q
��(� + 4)

2 + �
; (� < 0): (2:57)

Squaring (2.57) we get a quadratic equation for �, the solution of which is

� = �2
2
41 �

 
1 + tan2

 
k�

N � 1

!!
�1=2

3
5

= �2
"
1� cos

 
k�

N � 1

!#
: (2.58)

For any �xed N , the smallest values of j�j is given by (2.58) for k = 1,

�max = min
k
j�j = �2

�
1� cos

�
�

N � 1

��
: (2:59)

As N increases, we have

�max ! �2
"
1 �

 
1 � �2

2(N � 1)2
+O

�
1

N4

�!#

= � �2

(N � 1)2
� ��2h2: (2.60)

Thus the eigenvalues of M̂1=24h
2 (and hence of ~M1=24h

2) are bounded away from zero by

the value �
�
�2

24

�
.

We now consider ~M2. One can verify that

~M2 = �M̂2M̂
T
2

(2:61)
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where

M̂2 =

2
66666666666666666666666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 �2 1 0

0 1 �2 1

1 �2 1

1 0
0 1 �2 1 0

0 0 1 �2 0
0 1 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

3
77777777777777777777777777777777777775

(2:62)

Therefore ~M2 is non-positive de�nite. In a similar fashion ~M3 is non-positive de�nite because

M3 = �M̂3M̂
T
3

(2:63)
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with

M̂3 =

2
6666666666666666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 �1
1 �1

1 �1
1 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3
7777777777777777777777777777775

: (2:64)

The matrices ~M4 and ~M5 are N �N matrices with zero entries except for 6 � 6 upper-left

(lower-right) blocks. It is su�cient to show that these blocks are negative de�nite. This

was done symbolically using the Mathematica software and plotted for 0 � L; R < 1 and

�0 = 1. ~M4 and ~M5 are indeed negative de�nite for, 0 � R; L < 1. Thus we have shown

that ~M = 1

2
(M + MT ) is indeed negative de�nite, and its eigenvalues are bounded away

from zero by (��2=24), even as N !1, and the error estimate (2.13) is valid.

3 The Two Dimensional Case

We consider the inhomogeneous di�usion equation, with constant coe�cients, in a domain


. To begin with we shall assume that 
 is convex and has a boundary curve @ 
 � C2.

The convexity restriction is for the sake of simplicity in presenting the basic idea; it will be
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removed later. We thus have

@u

@t
= k

 
@2u

@x2
+
@2u

@y2

!
+ f(x; y; t); x; y� 
; t � 0; k > 0 (3:1a)

u(x; y; 0) = u0(x; y) (3:2b)

u(x; y; t)j@
 = uB(t) (3:1c)

We shall refer to the following grid representation:

y

x

k=1

k=2

k=3

k

k=Mr

Ω

j=1 j=2 j=3 j=Mcj

Figure 2: Two dimensional grid.

We have MR rows and Mc columns inside 
. Each row and each column has a discreitized

structure as in the one 1-D case, see �gure 1. Let the number of grid points in the kth row

be denoted by Rk and similarly let the number of grid points in the jth column be Cj. Let
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the solution projection be designated by Uj;k(t). By U(t) we mean, by analogy to the 1-D

case,

U(t) = (u1;1; u2;1; . . . ; uR1;1;u1;2; u2;2; . . . ; uR2;2; . . . ;u1;MR
; u2;MR

; . . .uRMR
;MR

)

� (u1;u2; . . . ;uMR
) (3.2)

Thus, we have arranged the solution projection array in vectors according to rows, starting

from the bottom.

If we arrange this array by columns (instead of rows) we will have the following structure

U(c)(t) = (u1;1; u1;2; . . . ; u1;c1;u2;1; u2;2; . . . ; u2;c2; . . . ;uMc;1; uMc;2; . . . ; uMc;cMc
)

� (u
(c)
1 ;u

(c)
2 ; . . . ;u

(c)
Mc
) (3.3)

Since U(c)(t) is just a permutation of U(t), there must exist an orthogonal matrix P such

that

U(c)(t) = PU (3:4)

If the length of U(t) is `, then P is an `� ` matrix whose each row contains `� 1 zeros and

a single 1 somewhere.

The second derivative operator @2=@x2 in (3.1a) is represented on the kth row by the

di�erentiation matrix D
(x)
k , whose structure is given by (2.14). Similarly let @2=@y2 be given

on the jth column by D
(y)
j , whose structure is also given by (2.14). With this notation the

Laplacian of the solution projection is:

 
@2

@x2
+

@2

@y2

!
uij(t) = D(x)U+D(y)U(c) +T(x)

e +T(y)
e (3:5)
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where

D(x) =

2
664
D

(x)
1

D
(x)
2

D
(x)
MR

3
775 ;D(y) =

2
664
D

(y)
1

D
(y)
2

D
(y)
Mc

3
775 (3:6)

where D(x) and D(y) are (`� `) matrices and have the block structures shown. T(x)
e and T(y)

e

are the truncation errors associated with D(x) and D(y), respectively. We now call attention

to the fact that D(x) and D(y) do not operate on the same vector. This is �xed using (3.4):

r2uij(t) = r2U = (D(x) + P TD(y)P )U +T(x)
e + P TT(y)

e (3:7)

Thus (3.1a) becomes, by analogy to (2.5),

dU

dt
= k(D(x) + P TD(y)P )U+ k(T(x)

e + P TT (y)
e ) + f(t) (3:8)

where f(t) is f(x; y; t) arranged by rows as a vector.

Before proceeding to the semi-discrete problem let us de�ne:

M
(x)
k = D

(x)
k � �LkALk � �RkARk (3:9)

where �Lk ; ALk are the �L and AL de�ned in section 2, appropriate to the kth row; similarly

for �Rk and ARk . In the same way, de�ne

M
(y)
j = D

(y)
j � �LjALj � �RjARj (3:10)

where the notation should be self explanatory by now.

We can now write the semi-discrete problem by analogy to (2.6)

dV

dt
= k(M(x) + P TM(y)P )V + kG(x) + kP TG(y) + f(t) (3:11)
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where V is the numerical approximation to U;

M(x) =

2
664
M

(x)
1

M
(x)
2

M
(x)
MR

3
775 ;M(y) =

2
664
M

(y)
1

M
(y)
2

M
(y)
Mc

3
775 ; (3:12)

and

G(x) =
h
(�L1

gL1
+ �R1

gR1
); . . . ; (�LkgLk + �RkgRk); . . . ; (�LMr

gLMR
+ �RMR

gRMR
)
i
;

G(y) =
h
(�L1

gL1
+ �R1

gR1
); . . . ; (�LjgLj + �RjgRj); . . . ; (�LMc

gLMc
+ �RMc

gRMc
)
i
: (3.13)

Note that inG(y) the indices \L" and \R" designate, of course, bottom and top, rather than

left and right. Subtracting (3.11) from (3.8) we get in a fashion similar to the derivation of

(2.9):

dE

dt
= k[M(x) + P TM(y)P ]E+ kT2 (3:14)

where E = U � V is the two dimensional array of the errors, �ij, arranged by rows as a

vector. T2 is proportional to the truncation error.

The time change of k E k2 is given by

1

2

d

dt
k E k2= k(E; (M(x) + P TM(y)P )E) + k(E;T2) (3:15)

The symmetric part of M(x) + P TM(y)P is given by

1

2
[(M(x) +M(x)T ) + P T (M(y) +M(y)T )P ] (3:16)

Clearly M(x) +M(x)T and M(y) +M(y)T are block-diagonal matrices with typical blocks

given by M
(x)
k +M

(x)T

k and M
(y)
j +M

(y)T

j . We have already shown in the one dimensional

25



case that each one of those blocks is negative de�nite and bounded away from zero by �2=24.

Therefore the operator (3.16) is also negative de�nite and bounded away from zero. The

rest of the proof follows the one dimensional case and thus the norm of the error k E k is

bounded by a constant.

If the domain 
 is not convex or simply connected then either rows or columns, or both,

may be \interrupted" by @
. In that case the values of the solution on each \internal"

interval (see �gure [3] below) are taken as separate vectors.

U
k

(1)
U

k

(2)

U
j

(c),(2)

Ω

y

x

Ω

j

k

U

U
j

(c),(1)
U

j

(c),(1)

Figure 3: Two dimensional grid, non convex domain.

Decomposing \interrupted" vectors in this fashion leaves the previous analysis unchanged.

The length of U (or U(c)) is again `, where ` is the number of grid nodes inside 
. The
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di�erentiation and permutation matrices remain `� `. Note that adding more \holes" inside

@
 does not change the general approach.

4 Numerical Example

In this section we describe numerical results for the following problem:

@u

@t
= k(uxx + uyy) + f(x; y; t); (x; y)�
; t > 0; (4:1)

where 
 is the region contained between a circle of radius r0 = 1=2 and inner circle of radius

ri � 0:1. The inner circle is not concentric with the outer one. Speci�cally 
 is described by

n
(x� :5)2 + (y � :5)2 � 1=4

o
\
n
(x� :6)2 + (y � :5)2 � (:1� �)2; 0 < � < :1

o
(4:2)

The cartesian grid in which 
 is embedded spans 0 � x; y � 1. We took �x = �y, and ran

several cases with �x = 1/50, 1/75, 1/100. The geometry thus looks as follows:

x

y

x=0

y=0

0.5

1

r =.1-
r =.5

Ω

δ
1

0

0.6 10.5

Figure 4:
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The source function f(x; y; t) was chosen di�erent from zero so that we could assign an

exact analytic solution to (4.1). This enables one to compute the error Eij = Uij � Vij

\exactly" (to machine accuracy). We chose k = 1 and

u(x; y; t) = 1 + cos(10t� 10x2 � 10y2) (4:3)

This leads to

f(x; y; t) = 400(x2 + y2) cos(10t � 10x2 � 10y2)

� 50 sin(10t� 10x2 � 10y2) (4.4)

From the expression for u(x; y; t) one obtains the boundary and initial conditions.

The problem (4.1), (4.2), (4.4) was solved using both a \standard" fourth order algorithm

(a 2-D version of (2.3)) and the new \SAT," or \bounded error," approach described in

Section 3. The temporal advance was via a fourth order Runge-Kutta.

The standard algorithm was run for �x = 1=50 and a range of 0 � � < :01 (:09 < ri � :1).

We found that for � � :0017323, the runs were stable and the error bounded for \long" times

(105 time steps, or equivalently t = 2). For 0 � � < :0017233 the results began to diverge

exponentially from the analytic solution. The \point of departure" depended on �. A

discussion of these results is deferred to the next section. Figures 5,6,7 show the L2-norm of

the error vs. time for di�erent radii of the inner \hole."

The same con�gurations were also run using the \bounded error" algorithm described in

Section 3 (see eq. (3.5)), and the results are shown in �gures 8,9,10,11. It is seen that for
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�'s for which the standard methods fails, the new algorithm still has a bounded error, as

predicted by the theory.

To check on the order of accuracy, the \SAT" runs (with � = 0) were repeated for

�x = �y = 1=75 and 1/100. Figure 12,13, and 14 show the logarithmic slope of the L2; L1

and L1 errors to be less than �4; i.e., we indeed have a 4th order method. That the slopes

are larger in magnitude than 4.5 is attributed to the fact that as �x = �y decreases the

percentage of \internal" points increases (the boundary points have formally only 3rd oder

accuracy). It is therefore possible that if the number of grid points was increased much

further, the slope would tend to �4. Lack of computer resources prevented checking this

point further. (For �x = 0:01, running 20,000 time steps, t = :1, cpu time on a CRAY YMP

is about 5 hours). It should also be noted that the \bounded-error" algorithm was run with

a time step, �t, twice as large as the one used in the standard scheme. At this larger �t

the standard scheme \explodes" immediately.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 5: � = 0:0017325, Standard
scheme

0.25 0.5 0.75 1 1.25 1.5 1.75 2
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 6: � = 0:0017323, Standard
scheme
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0.0002 0.0004 0.0006 0.0008 0.001
t

20000

40000

60000

80000

100000

120000

140000

err

Figure 7: � = 0:0015, Standard scheme

0.5 1 1.5 2 2.5 3 3.5 4
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 8: � = 0, SAT scheme

0.5 1 1.5 2 2.5 3 3.5 4
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 9: � = 0:0015, SAT scheme

0.5 1 1.5 2 2.5 3 3.5 4
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 10: � = 0:0017323, SAT scheme

0.5 1 1.5 2 2.5 3 3.5 4
t0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

err

Figure 11: � = 0:0017325, SAT scheme
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Figure 12: Order of accuracy L1

30



1.7 1.8 1.9 2 2.1 2.2
Log[N]
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Figure 13: Order of accuracy L2
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Log[N]
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Figure 14: Order of accuracy L1

A study of the e�ect of size of �t shows that the instabilities exhibited above are due to

the time-step being near the C.F.L.-limit. It is interesting that this C.F.L.-limit depends so

strongly on the geometry.

5 Conclusions

(i) The theoretical results show that one has to be very careful when using an algorithm

whose di�erentiation matrix, or rather its symmetric part, is not negative de�nite. For

some problems, such \standard" schemes will give good answers (i.e., bounded errors)

and for others instability will set in. Thus, for example, the \standard" scheme for

the 1-D case has a matrix which, for all 0 < L; R < 1, though not negative de�nite

has eigenvalues with negative real parts. This assures, in the 1-D case, the temporally

asymptotic stability. In the 2-D case, even though each of the block sub-matrices of

the ` � ` x-and-y di�erentiation matrices has only negative (real-part) eigenvalues, it

is not assured that the sum of the two ` � ` matrices will have this property. This

depends, among other things, on the shape of the domain and the mesh size (because
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the mesh size determines, for a given geometry, the L and R's along the boundaries).

Thus that we might have the \paradoxical" situation, that for a given domain shape,

successive mesh re�nement could lead to instability due to the occurrence of destabi-

lizing 's. This cannot happen if one constructs, as was done here, a scheme whose

di�erentiation matrices have symmetric parts that are negative de�nite.

It is also interesting to note that if one uses explicit standard method then the allow-

able C.F.L. may decrease extremely rapidly with change in the geometry that causes

decrease in the 's. This point is brought out in �gures 5 to 7.

(ii) Note that the construction of the 2-D algorithm, and its analysis, which were based

on the 1-D case, can be extended in a similar (albeit more complex) fashion to higher

dimensions.

(iii) Also note that if the di�usion coe�cient k, in the equation

ut = k�2u

is a function of the spatial coordinates, k = k(x; y; z), the previous analysis goes

through but the energy estimate for the error is now for a di�erent, but equivalent

norm.
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Appendix I

We start with

Dj = bDj�1 � a2Dj�2 (A:1)

with

D1 = b;D2 = b2 � a2 (A:2)

We associate with (A.1) a generating function f(x),

f(x) =
1X
j=0

Dj+1x
j (A:3)

Multiplying (A.1) by xj�2 for each j � 3, and summing both sides we obtain:

f �D1 �Dxx

x2
= b

f �D1

x
� a2f (A:4)

leading to

f =
1

a2

"
D1 + (D2 � bD1)x

x2 � (b=a2)x+ (1=a2)

#

=
1

a2
D1 + (D2 � bD1)x

(x� u1)(x� u2)
(A.5)

where u1; u2 are given by (2.48), (2.49).

We may also present f by

f =
1

a2

"
A

(x� u1)
+

B

(x� u2)

#
(A:6)
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Comparing (A.6) and (A.5) we get expression for A and B as given in (2.50), (2.51). Ex-

panding the denominator in (A.6) we get the following series for f

f(x) = � 1

a2

1X
j=0

 
A

u
j+1
1

+
B

u
j+1
2

!
xj; (A:7)

from which it immediately follows (see (A.3)) that

Dj = � 1

a2

 
A

u
j
1

+
B

u
j
2

!
(A:8)
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